11 research outputs found

    Highly protein-loaded melt extrudates produced by small-scale ram and twin-screw extrusion - evaluation of extrusion process design on protein stability by experimental and numerical approaches

    Get PDF
    Understanding of generation, extent and location of thermomechanical stress in small-scale (< 3 g) ram and twin-screw melt-extrusion is crucial for mechanistic correlations to the stability of protein particles (lysozyme and BSA) in PEG-matrices. The aim of the study was to apply and correlate experimental and numerical approaches (1D and 3D) for the evaluation of extrusion process design on protein stability. The simulation of thermomechanical stress during extrusion raised the expectation of protein degradation and protein particle grinding during extrusion, especially when TSE was used. This was confirmed by experimental data on protein stability. Ram extrusion had the lowest impact on protein unfolding temperatures, whereas TSE showed significantly reduced unfolding temperatures, especially in combination with kneading elements containing screws. In TSE, the mechanical stress in the screws always exceeded the shear stress in the die, while mechanical stress within ram extrusion was generated in the die, only. As both extruder designs revealed homogeneously distributed protein particles over the cross section of the extrudates for all protein-loads (20–60%), the dispersive power of TSE revealed not to be decisive. Consequently, the ram extruder would be favored for the production of stable protein-loaded extrudates in small scale

    Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes

    Get PDF
    We developed a new 2-day protocol for the generation of dendritic cells (DCs) from human monocytes in vitro. First, we demonstrated that 24 hours of culture with GM-CSF and IL-4 are sufficient to generate immature DCs capable of antigen uptake. We then compared two different strategies for DC maturation: proinflammatory mediators were either added together with GM-CSF and IL-4 from the beginning of cell culture or added after 24 hours of differentiation with GM-CSF and IL-4. After 48 hours of total culture period, expression of activation markers was more pronounced in cells generated by the 2-step differentiation and activation method. Our new protocol for 2-day DC differentiation reduces labor, cost and time and also reliably renders high numbers of mature and viable DCs

    Impact of process stress on protein stability in highly-loaded solid protein/PEG formulations from small-scale melt extrusion

    No full text
    As protein-based therapeutics often exhibit a limited stability in liquid formulations, there is a growing interest in the development of solid protein formulations due to improved protein stability in the solid state. We used small-scale (<3 g) ram and twin-screw extrusion for the solid stabilization of proteins (Lysozyme, BSA, and human insulin) in PEG-matrices. Protein stability after extrusion was systematically investigated using ss-DSC, ss-FTIR, CD spectroscopy, SEM-EDX, SEC, RP-HPLC, and in case of Lysozyme an activity assay. The applied analytical methods offered an accurate assessment of protein stability in extrudates, enabling the comparison of different melt extrusion formulations and process parameters (e.g., shear stress levels, screw configurations, residence times). Lysozyme was implemented as a model protein and was completely recovered in its active form after extrusion. Differences seen between Lysozyme- and BSA- or human insulin-loaded extrudates indicated that melt extrusion could have an impact on the conformational stability. In particular, BSA and human insulin were more susceptible to heat exposure and shear stress compared to Lysozyme, where shear stress was the dominant parameter. Consequently, ram extrusion led to less conformational changes compared to TSE. Ram extrusion showed good protein particle distribution resulting in the preferred method to prepare highly-loaded solid protein formulations

    Microwell Plate-Based Dynamic Light Scattering as a High-Throughput Characterization Tool in Biopharmaceutical Development

    No full text
    High-throughput light scattering instruments are widely used in screening of biopharmaceutical formulations and can be easily incorporated into processes by utilizing multi-well plate formats. High-throughput plate readers are helpful tools to assess the aggregation tendency and colloidal stability of biological drug candidates based on the diffusion self-interaction parameter (kD). However, plate readers evoke issues about the precision and variability of determined data. In this article, we report about the statistical evaluation of intra- and inter-plate variability (384-well plates) for the kD analysis of protein and peptide solutions. ANOVA revealed no significant differences between the runs. In conclusion, the reliability and precision of kD was dependent on the plate position of the sample replicates and kD value. Positive kD values (57.0 mL/g, coefficients of variation (CV) 8.9%) showed a lower variability compared to negative kD values (−14.8 mL/g, CV 13.4%). The variability of kD was not reduced using more data points (120 vs. 30). A kD analysis exclusively based on center wells showed a lower CV (kD analysis within the early formulation development, screening up to 20 formulations consuming less than 50 mg of active pharmaceutical ingredient (API)

    Microwell Plate-Based Dynamic Light Scattering as a High-Throughput Characterization Tool in Biopharmaceutical Development

    No full text
    High-throughput light scattering instruments are widely used in screening of biopharmaceutical formulations and can be easily incorporated into processes by utilizing multi-well plate formats. High-throughput plate readers are helpful tools to assess the aggregation tendency and colloidal stability of biological drug candidates based on the diffusion self-interaction parameter (kD). However, plate readers evoke issues about the precision and variability of determined data. In this article, we report about the statistical evaluation of intra- and inter-plate variability (384-well plates) for the kD analysis of protein and peptide solutions. ANOVA revealed no significant differences between the runs. In conclusion, the reliability and precision of kD was dependent on the plate position of the sample replicates and kD value. Positive kD values (57.0 mL/g, coefficients of variation (CV) 8.9%) showed a lower variability compared to negative kD values (−14.8 mL/g, CV 13.4%). The variability of kD was not reduced using more data points (120 vs. 30). A kD analysis exclusively based on center wells showed a lower CV (&lt;2%) compared to edge wells (5–12%) or a combination of edge and center wells (2–5%). We present plate designs for kD analysis within the early formulation development, screening up to 20 formulations consuming less than 50 mg of active pharmaceutical ingredient (API)

    Epidemiological investigation of a tularaemia outbreak after a hare hunt in Bavaria, Germany, 2018

    Get PDF
    In November 2018, a tularaemia outbreak occurred in Bavaria, Germany, among participants of a hare hunt and butchery employees handling the hares. We con-ducted an epidemiological outbreak investigation, including a retrospective cohort study among hunting participants, to identify likely transmission routes and activi-ties associated with infection. Twelve of 41 participants were antibody- positive for Francisella (F.) tularensis (attack rate: 29%). Cases reported influenza- like symptoms (n= 11), lymphadenopathy (n= 1) and conjunctivitis (n= 1). Infection only occurred in those hunting participants present while hares were processed, while risk of infec-tion was highest when directly involved (RR = 10.0; 95%CI: 2.6–392). F. tularensiswas isolated from 1/4 hares. Only two individuals reported using some of the rec-ommended personal protective equipment (PPE). Occurrence of mainly non-specific symptoms, likely due to early treatment, was not indicative of a specific transmis-sion route. Transmissions via direct (skin/mucosa) contact and by inhalation of con-taminated aerosols seem plausible. Promoting and increasing appropriate use of PPE among people processing hares is crucial to prevent future outbreaks.Peer Reviewe

    Outbreak of Tularemia in a Group of Hunters in Germany in 2018—Kinetics of Antibody and Cytokine Responses

    No full text
    In November 2018, an outbreak of tularemia occurred among hare hunters in Bavaria, Germany. At least one infected hare was confirmed as the source of infection. A number of hunting dogs showed elevated antibody titers to Francisella tularensis, but the absence of titer increases in subsequent samples did not point to acute infections in dogs. Altogether, 12 persons associated with this hare hunt could be diagnosed with acute tularemia by detection of specific antibodies. In nine patients, the antibody and cytokine responses could be monitored over time. Eight out of these nine patients had developed detectable antibodies three weeks after exposure; in one individual the antibody response was delayed. All patients showed an increase in various cytokines and chemokines with a peak for most mediators in the first week after exposure. Cytokine levels showed individual variations, with high and low responders. The kinetics of seroconversion has implications on serological diagnoses of tularemia
    corecore